Solar Photovoltaic
Solar Thermal 1/2
Solar Thermal 2/2
Other Solar Tech
Wind Energy
Hydro Energy
Bio Mass Energy
Kyoto Protocol
Copenhegan Summit
Green House Effect

 

 

 


 

 

 

 

 

 

 

 

 

 


Airvoice Renewable Energy Private Limited

5 / 8

Renewable energy technologies are essential contributors to sustainable energy as they generally contribute to world energy security, reducing dependence on fossil fuel resources, and providing opportunities for mitigating greenhouse gases.

The International Energy Agency states that: Conceptually, one can define three generations of renewables technologies, reaching back more than 100 years.

First-generation technologies emerged from the industrial revolution at the end of the 19th century and include hydropower, biomass combustion, and geothermal power and heat. Some of these technologies are still in widespread use.

Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy, and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.

Third-generation technologies are still under development and include advanced biomass gasification, bio refinery technologies, concentrating solar thermal power, hot dry rock geothermal energy, and ocean energy. Advances in nanotechnology may also play a major role.

First-generation technologies: are most competitive in locations with abundant resources. Their future use depends on the exploration of the available resource potential, particularly in developing countries, and on overcoming challenges related to the environment and social acceptance.

Among sources of renewable energy, hydroelectric plants have the advantages of being long-lived -- many existing plants have operated for more than 100 years. Also, hydroelectric plants are clean and have few emissions. Criticisms directed at large-scale hydroelectric plants include: dislocation of people living where the reservoirs are planned, and release of significant amounts of carbon dioxide during construction and flooding of the reservoir.

However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales. Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs -- especially for imported energy -- and widespread desires for more domestically-produced, clean, renewable, and economical generation.

5 / 8


Bookmark this site
Copyright © 2010 Airvoicegroup. All rights reserved.
Optimized for high speed broadband internet access, Internet Explorer 5.5 and above. 1024x768. 32bit Colour.

Web Analytics